A Novel, Non-Contact NDT Scanner Case Study: Thickness Measurement, Debonding and Defects Detection in Metallic and Composite Parts

Artikel

The NDT methods currently used in aviation MRO are predominantly labour-intensive and time-consuming processes performed by human operators throughout the lifespan of an aircraft. These techniques are time-consuming, require perpetual training and are highly dependent on the operator's skills. Thus, there is a growing need for more efficient, automated, and accurate NDT tools that will be able to provide faster and less labour-intensive assessments. This study presents a novel, non-contact, automated NDT scanning system under development, which aims to reduce the inspection time significantly. The proposed technique uses a non-contact, Lamb wave-based approach. A further essential step during the process is to use an automated positioning system. Thickness mapping and defect detection in metal and composite structures have been performed. A local thickness map in the order of 1 mm has been obtained through a fast-scanning process with comparable resolution to conventional inspection techniques. Overall, it is currently concluded that the proposed NDT scanner is a promising tool that potentially can reduce the inspection time while also having the potential to automate the damage assessment resulting in more efficient MRO inspection processes.

Reference Volker, A., Stamoulis, K. P., Schoemaker, C., Apostolidis, A., van Tongeren, D., Poppe, R., Bekkema, B., & Martina, Q. (2024). A Novel, Non-Contact NDT Scanner Case Study: Thickness Measurement, Debonding and Defects Detection in Metallic and Composite Parts. Journal of Physics: Conference Series, 2692, Article 012024. https://doi.org/10.1088/1742-6596/2692/1/012024
Published by  Kenniscentrum Techniek 1 January 2024

Publication date

Jan 2024

Author(s)

Arno Volker
Asteris Apostolidis
Donald van Tongeren
Robert Poppe
Bart Bekkema
Quincy Martina

Publications:

Research database